Hot
-76%
James – The Python for Traders Masterclass
Original price was: $49.00.$12.00Current price is: $12.00.
- Affordable & Permanent Stored Courses
- No hidden charges
- We care about your privacy
- Instant MEGA links Download
- 100% Safe and Secure Payments
- We Also Accepts Payment Through UPI
- Description
- Size Guide
- Reviews (0)
Description
James – The Python for Traders Masterclass
James – The Python for Traders Masterclass . File Size – 491.8
What You Get :
The Python for Traders Masterclass
8 Modules
4 Projects
105 Lessons
248 Code Examples
34 Hours of Content
Module 1: Introduction
- 1.1. Welcome to the Python for Traders Masterclass(2:14)PREVIEW
- 1.2. Why learn to code as a trader?(7:15)PREVIEW
- 1.3. Why should traders learn Python?(4:23)PREVIEW
- 1.4. What will I gain from this course ? PREVIEW
- 1.5. What topics will be covered ? PREVIEW
- 1.6. Who is the intended audience for this course ? PREVIEW
- 1.7. How much finance knowledge do I need?(1:40)PREVIEW
- 1.8. How much coding knowledge do I need?(1:37)PREVIEW
- 1.9. Placement Quiz: Am I a good fit for this course ? PREVIEW
- 1.10. Module Quiz START
Module 2: Python Fundamentals for Finance
- 2.1. Python Installation and Setup START
- 2.2. Running Python Code START
- 2.3. Basic Python(26:34)START
- 2.4. Intermediate Python(5:07)START
- 2.5. Advanced Python START
- 2.6. Data Science in Python START
- 2.7. Key library: Pandas START
- 2.8. Key library: NumPy START
- 2.9. Key library: Matplotlib START
- 2.10. Key library: Stats models START
- 2.11. Key library: Scikit-learn START
Module 3: Working with Financial Data
- 3.1. Introduction to Financial Data: Time Series and Cross-Sections START
- 3.2. Data Acquisition and Cleaning(18:09)START
- 3.3. Time Series Analysis(13:38)START
- 3.4. Understanding Stationarity(11:55)START
- 3.5. Time Series Forecasting START
- 3.6. Exploratory Data Analysis START
- 3.7. Section summary START
Module 4: How to Code and Backtest a Trading Algorithm
- 4.1. So what is a trading algorithm ? START
- 4.2. Algorithm Design Principles START
- 4.3. Data Management Module(15:12)START
- 4.4. Signal Generation Module(15:12)START
- 4.5. Risk Management Module(10:58)START
- 4.6. Trade Execution Module(10:27)START
- 4.7. Portfolio Management Module(11:05)START
- 4.8. Backtesting Basics START
- 4.9. Backtesting Software START
- 4.10. Advanced Backtesting Techniques START
- 4.11. Optimization and Parameter Tuning START
Project 1: Research & Backtest a Realistic Trading Algorithm
- Project Overview(6:57)START
- Step 1: Getting Started on Quant Connect(6:53)START
- Step 2: Formulate a Strategy START
- Solution: Formulate a Strategy START
- Step 3: Develop the Algorithm START
- Solution: Develop the Algorithm START
- Step 4: Run a Backtesting Analysis START
- Solution 4: Run a Backtesting Analysis START
- Project Summary START
Module 5: Automated Data Collection, Cleaning, and Storage
- 5.1. Sourcing financial data(5:38)START
- 5.2. Working with CSVs START
- 5.3. Working with JSONSTART
- 5.4. Scraping data from APIs(51:35)START
- 5.5. Scraping data from websites START
- 5.6. Persisting data: files and databases START
- 5.7. Section summary START
Module 6: Analyzing Fundamentals in Python
- 6.1. Structured vs. Unstructured Data START
- 6.2. Types of Fundamental Data START
- 6.3. Gathering & Cleaning Fundamental Data START
- 6.4. Automated Screening & Filtering START
- 6.5. Statistical Analysis of Fundamental Data START
- 6.6. Natural Language Processing on News Articles START
- 6.7. Natural Language Processing on Annual Reports START
- 6.8. Using LLMs for Natural Language Processing START
Module 7: Options & Derivatives Pricing Models
- 7.1. Introduction to Options & Derivatives START
- 7.2. Basics of Option Pricing START
- 7.3. The Binomial Options Pricing Model START
- 7.4. The Black-Scholes-Merton Model START
- 7.5. Monte Carlo Simulation for Option Pricing START
- 7.6. Introduction to Exotic Options START
- 7.7. Interest Rate Derivatives and Term Structure START
- 7.8. Implementing Finite Difference Methods for Option Pricing START
- 7.9. Volatility and Implied Volatility START
- 7.10. Advanced Topics and Modern Developments (Optional)START
Project 2: Volatility Surface Analysis Tool
- Project Overview START
- Step 1: Fetching Options Data START
- Solution: Fetching Options Data START
- Step 2: Calculating Implied Volatilities START
- Solution: Calculating Implied Volatilities START
- Step 3: Plot a 3D Volatility Surface START
- Solution: Plot a 3D Volatility Surface START
- Project Summary START
Module 8: Introduction to High-Frequency Trading
- 8.1. What is High Frequency Trading (HFT)?START
- 8.2. Handling High-Frequency Tick Data START
- 8.3. Latency Measurement and Simulation START
- 8.4. Understanding the HFT Market Making Strategy START
- 8.5. Understanding Statistical Arbitrage with High-Frequency Data START
- 8.6. Signal Processing for HFTSTART
- 8.7. Real-time News Processing START
- 8.8. Section summary START
Project 3: Design & Build a Limit Order Book
- Project Overview START
- Step 1: Design the Data Structure START
- Solution: Design the Data Structure START
- Step 2: Add Functionality START
- Solution: Add Functionality START
- Step 3: Simulate Live Orders START
- Solution: Simulate Live Orders START
- Project Summary START
Capstone Project: Coding a Simple HFT Market Making Bot
- Project Overview START
- Step 1: Define a System and Class Architecture START
- Solution: Define a System and Class Architecture START
- Step 2: Define the Event Loop START
- Solution: Define the Event Loop START
- Step 3: Implement the Data Feeds START
- Solution: Implement the Data Feeds START
- Step 4: Implement the Order Manager START
- Solution: Implement the Order Manager START
- Step 5: Add Alpha to the Pricing Strategy START
- Solution: Add Alpha to the Pricing Strategy START
- Project Summary START
- Please leave your email address for further Updates from Cultcourse
- Files will be delivered through MEGA Download Link
- Permanent Stored Courses
- 100% Safe & Secure Payments
join us on Telegram : http://t.me/cultcourse
Join us on Instagram : https://www.instagram.com/cultcourse/
more courses like this : http://cultcourse.com/shop/
size | chest(in.) | waist(in.) | hips(in.) |
---|---|---|---|
XS | 34-36 | 27-29 | 34.5-36.5 |
S | 36-38 | 29-31 | 36.5-38.5 |
M | 38-40 | 31-33 | 38.5-40.5 |
L | 40-42 | 33-36 | 40.5-43.5 |
XL | 42-45 | 36-40 | 43.5-47.5 |
XXL | 45-48 | 40-44 | 47.5-51.5 |
Reviews
There are no reviews yet.